东南教育网您的位置:首页 >教育行情 >

数学知识:初中三角函数公式汇总

导读 最近越来越多的小伙伴对于初中三角函数公式汇总这方面的问题开始感兴趣,因为大家现在都是想要了解到此类的信息,那么既然现在大家都想要知

最近越来越多的小伙伴对于初中三角函数公式汇总这方面的问题开始感兴趣,因为大家现在都是想要了解到此类的信息,那么既然现在大家都想要知道初中三角函数公式汇总,小编今天就来给大家针对这样的问题做个科普介绍吧。

初中三角函数公式有三角函数两角和差公式,三角函数半角公式,三角函数倍角公式,锐角三角函数公式等等。接下来分享初中三角函数公式汇总吗供参考。

初中三角函数公式汇总

三角函数的诱导公式

诱导公式一:终边相同的角的同一三角函数的值相等

设α为任意锐角,弧度制下的角的表示:

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

诱导公式二:π+α的三角函数值与α的三角函数值之间的关系

设α为任意角,弧度制下的角的表示:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

诱导公式三:任意角α与-α的三角函数值之间的关系

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

诱导公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

诱导公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

诱导公式六:π/2±α及3π/2±α与α的三角函数值之间的关系

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

三角函数半角公式

sin(A/2)=√((1-cosA)/2)

sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)

cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))

tan(A/2)=-√((1-cosA)/((1+cosA))

三角函数倍角公式

Sin2A=2SinA*CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

三角函数三倍角公式

sin3A=4sinA*sin(π/3+A)sin(π/3-A)

cos3A=4cosA*cos(π/3+A)cos(π/3-A)

tan3A=tanA*tan(π/3+A)*tan(π/3-A)

三角函数两角和与差公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-cossinB

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

三角函数积化和差

sinAsinB=-[cos(A+B)-cos(A-B)]/2

cosAcosB=[cos(A+B)+cos(A-B)]/2

sinAcosB=[sin(A+B)+sin(A-B)]/2

cosAsinB=[sin(A+B)-sin(A-B)]/2

三角函数和差化积

sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]

sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]

cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]

cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如有侵权行为,请第一时间联系我们修改或删除,多谢。