数学知识:三角函数倍角公式证明方法
最近越来越多的小伙伴对于三角函数倍角公式证明方法这方面的问题开始感兴趣,因为大家现在都是想要了解到此类的信息,那么既然现在大家都想要知道三角函数倍角公式证明方法,小编今天就来给大家针对这样的问题做个科普介绍吧。
倍角公式是三角函数中非常实用的一类公式。就是把二倍角的三角函数用本角的三角函数表示出来。接下来分享三角函数倍角公式及证明方法。
三角函数倍角公式Sin2A=2SinA·CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=2tanA/1-tanA^2
三角函数倍角公式证明方法sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA
cos2A=cos(A+A)=cosAcosA-sinAsinA=(cosA)^2-(sinA)^2=2(cosA)^2-1=1-2(sinA)^2
tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-(tanA)^2]
三角函数半角公式sin(A/2)=±√((1-cosA)/2)
cos(A/2)=±√((1+cosA)/2)
tan(A/2)=±√((1-cosA)/((1+cosA))
三角函数积化和差公式sinAsinB=-[cos(A+B)-cos(A-B)]/2
cosAcosB=[cos(A+B)+cos(A-B)]/2
sinAcosB=[sin(A+B)+sin(A-B)]/2
cosAsinB=[sin(A+B)-sin(A-B)]/2
三角函数和差化积公式sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]
sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]
cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]
cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)