数学知识:初中数学二倍角公式
最近越来越多的小伙伴对于初中数学二倍角公式这方面的问题开始感兴趣,因为大家现在都是想要了解到此类的信息,那么既然现在大家都想要知道初中数学二倍角公式,小编今天就来给大家针对这样的问题做个科普介绍吧。
三角函数中的二倍角公式:sin2α=2sinαcosα、cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)、tan2α=2tanα/[1-tan^2(α)]。
倍角公式及变形公式tan2A=2tanA/(1-tan2A)cot2A=(cot2A-1)/2cota
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
积化和差sinαsinβ=[cos(α-β)-cos(α+β)]/2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
三角函数定义三角函数是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。