东南教育网您的位置:首页 >教育动态 >

人教版圆柱的表面积教学设计及ppt 数学《圆柱的表面积》教学设计

导读 大家好,我是东南,我来为大家解答以上问题人教版圆柱的表面积教学设计及ppt,数学《圆柱的表面积》教学设计很多人还不知道,现在让我们一...

大家好,我是东南,我来为大家解答以上问题人教版圆柱的表面积教学设计及ppt,数学《圆柱的表面积》教学设计很多人还不知道,现在让我们一起来看看吧!

  在教学工作者开展教学活动前,往往需要进行教学设计编写工作,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。一份好的教学设计是什么样子的呢?以下是小编为大家收集的数学《圆柱的表面积》教学设计,仅供参考,大家一起来看看吧。

  数学《圆柱的表面积》教学设计 篇1

  教学目标:

  (1)理解和掌握圆柱体侧面积和表面积的计算方法,能正确计算圆柱体的侧面积和表面积。

  (2)培养学生观察操作概括的能力以及利用知识合理灵活地分析、解决实际问题地能力。

  教学重点:

  理解和掌握求圆柱表面积的计算方法

  教学难点:

  解答有关圆满柱体实物表面积的实际问题。

  教学关键:

  充分运用多媒体演示,引导学生观察,推导出面积公式。

  教具准备:

  学生准备自制圆柱、剪刀。

  教学过程:

  一、检查复习,引入新课。

  1.检查:拿出自制的圆柱,分别指出它的底面、侧面和高。

  2.复习:

  (1)点名说说两底的关系,圆柱的高以及侧面积展开可能是什么图形。

  (2)圆柱的特征是什么?

  (3)答下面问题:

  一个圆形花池,直径是5米,周长是多少?

  长方形的面积怎样计算?

  长方形的面积=长×宽。

  3.引入:两个底面和侧面合在一起就是圆柱的表面,这节课我们来学习圆柱的表面积。

  板书:圆柱的表面积

  二、引导探究,学习新知。

  1.侧面积的意义和计算方法。

  (1)摸一摸自制的圆柱的侧面,谈谈自己感觉到了什么。

  (2)想一想用我们已有的知识,能不能求出这个曲面的面积。

  小组讨论:有什么好办法求出圆柱的侧面积吗?

  (3)剪一剪自制的圆柱汇报交流结果。

  (4)说一说:圆柱的侧面可转化为已学过的平面图形,它的侧面积正好等于底面周长与高的乘积。

  板书:圆柱的侧面积=底面周长×高

  (5)算一算:选出下图中给出的数据,求出侧面积。(单位:厘米)

  小组汇报结果:可能出现的计算方法有

  方法一:25.12×20=502.4(平方厘米)

  方法二:3.14×8×20=502.4(平方厘米)

  方法三:3.14×(2×4)×20=502.4(平方厘米)

  小结:计算圆柱的侧面积,要根据所给的已知条件灵活计算。

  (6)小组合作,量一量自制圆柱的有关数据,求出它的侧面积,并反馈。

  (7)完成教科书例1及34页“做一做”的第1题。

  2.表面积的意义及计算方法。

  (1)自读课本:什么是圆柱的表面积?

  板书:圆柱的表面积=侧面积+2个底面积

  (2)出示例2(课件显示例2)(单位:厘米)

  小组讨论:根据所给数据,可以求出那些面积?学生可能得出以下几种结果。

  a、侧面积:2×3.14×5×15=471(平方厘米)

  b、2个底面积:2×3.14×5×5=157(平方厘米)

  c、表面积:471+157=628(平方厘米)

  (3)小结;圆柱的侧面积等于底面周长与高的乘积,圆柱的表面积等于两个底面积与侧面积的和,但是在实际生活中,有许多问题要根据实际情况,合理灵活地求出圆柱地表面积。

  三、巩固练习,灵活运用。

  1、自学课本,教科书第34页例3。

  (1)自读后分小组讨论:求圆柱形水桶所需铁皮地多少,是水桶哪几个面地面积?为什么?什么叫“进一法”为什么1821.2平方厘米≈1900平方厘米呢?

  (2)学生反馈:

  a.水桶是无盖的,所以求铁皮的面积就是求侧面积和一个底面的面积。

  b.在实际生活中,使用材料要比计划得到得结果要多一些,因此要保留整平方厘米,都要向前一位进1,这种方法叫进一法,所以1821.2平方厘米≈1900平方厘米。

  2、要知道下利物体的用料面积,要求那些面的总面积?(课件显示)

  铁皮制成的糖盒 纸杯 塑料水管

  3、只列式不计算。(课件显示)

  用铁皮制成圆柱形的通风管10节,每节长8分米,底面周长是3.4分米。至少需要铁皮多少平方分米?

  4、实践练习。

  (1)小组合作:测量并计算自制圆柱形事物的用料面积。

  (2)要计算制做这个圆柱形物体的用料面积,求哪些面的面积?需要知道哪些数据?怎样测量这些数据?

  (3)测量:测量所需的数据。(取整厘米数)

  (4)计算:根据量得的数据,列出算式并计算结果。

  四、布置作业

  教科书练习七的第2~5题

  板书设计

  圆柱的表面积

  两个底面积底面是个圆s=丌rr

  表面积

  一个侧面积侧面是个长方形s=ab

  数学《圆柱的表面积》教学设计 篇2

  一、引入新课:

  昨天我们认识了一个新的几何体朋友——圆柱,谁能向大家介绍一下你的这位新朋友?

  生:圆柱是由平面和曲面围成的立体图形。

  生:我还知道圆柱各部分的名称……

  生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。

  演示这一过程

  师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)

  师:你还想知道什么呢?

  生:还想知道怎么求它的表面积

  师:今天我们就一起来研究怎样求圆柱的表面积。(板书:圆柱的表面积)

  二、探究新知

  师:过去我们学过正方体、长方体的表面积,出示一个长方体,谁来摸一摸这个长方体的表面积?

  指名学生摸其表面积,并追问:怎样求它的表面积?

  生:六个面的面积和就是它的表面积

  师:怎样求圆柱的表面积呢?(学生分组讨论)

  学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)

  1、圆柱的侧面积

  师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)

  小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。

  师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。

  展示其变化过程。

  师生小结:(教师板书)侧面积=底面周长×高

  呈现例一:一个圆柱,底面直径是0.4米,高是1.8米,求它的侧面积。

  (1)学生独立解答

  (2)指明学生解答,并让其讲清自己的解题思路。

  师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?

  生:底面周长和高

  师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。

  2、圆柱的表面积

  师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)

  教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)

  指名学生说解题思路,

  师:这说明要计算圆柱的表面积需要抓出哪两个量?

  生:底面积和侧面积

  师生小结:圆柱的表面积=底面积×2﹢侧面积

  3、反馈练习:(略)

  师:想一想,应该先求什么?再求什么?请大家动手试一试。

  4实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)

  三、全课小结:

  这节课你有什么收获?

  你有没有想提醒同学们注意的地方?

  生:要注意单位,还要注意所要求得圆柱有几个底面。

  四、自我评价

  你认为自己这节课的表现如何?

  数学《圆柱的表面积》教学设计 篇3

  教学过程

  (一)复习导入,探求新知

  用课件展示复习内容:

  (1)我们学过的圆的周长是怎么计算的?面积呢?

  (2)长方形的面积呢?

  (3)圆柱有哪些特征?

  (二)设下悬念,导入课题

  由学过的长方体表面积的计算方法,设下悬念“要是这些面是曲面呢?表面积又要怎么求呢?”,激发学生的求知欲,带着问题进入本节课题。

  (三)动手操作,发现规律

  引导学生用一张纸做一个简单的圆柱模型,然后引导他们发现圆柱的特征,发现规律,例如:侧面的长=底面周长、侧面的宽=圆柱的高,还有本节课重点s圆柱=s侧面积+2×s底面积=c×h+2×πr2=2πr×h+2×πr2。

  (四)例题解剖,引导学习

  1、一顶厨师帽,高是30cm,帽顶直径20cm,做这样一顶帽子至少需要多少面料?

  解:(1)帽子的侧面积:s侧面积=2×3.14×20×30=3768(cm2)

  (2)帽顶的面积:s底面积=3.14×20×20=1256(cm2)

  (3)需要用面料:s侧面积+s底面积=3768+1256=5024(cm2)

  答:

  (五)巩固练习,知识拓展

  做一做:

  1、一个圆柱底面半径是2dm,高是5dm,求它的表面积?

  解:(1)s侧面积=2×3.14×2×5=62.8(dm2)

  (2)s底面积=3.14×2×2=12.56(dm2)

  (3)s圆柱=s侧面积+2×s底面积=62.8+2×12.56=87.92(dm2)

  2、一个圆柱表面积是6π,底面半径是2,则圆柱的高是多少?

  解:设圆柱的高为h,由s圆柱=s侧面积+2×s底面积=2πr×h+2×πr×r知,6π=2π×1×h+2×π×1×1,解得h=2

  (六)反思小结,加强记忆

  让学生自主总结“本节课学习了什么?”

  1.这堂课的主要内容是什么?

  2.求圆柱表面积的公式是什么?

  3.如何运用公式求解实际问题。

  这堂课我们学习了圆柱的表面积计算的基本思路及方法。在估算圆柱表面积时发现了圆柱的表面积公式。在今天的学习中,我们还要逐步深入、领会、掌握“转化”这一数学思想方法。

  (七)设置问题,带出课堂

  16页第6题的第1小题,第7题和第14题。

  教学目标

  1、认识圆柱,掌握它的基本特征,认识圆柱的底面,侧面和高。

  2、通过制作圆柱模型,探索并掌握圆柱的侧面积和表面积的计算,并运用到实际问题中。

  3、通过探究、观察等活动,了解平面图形与立体图形之间的联系,发展学生的空间观察。

  教学的重、难点及教学关键

  (一)教学重点:探索圆柱侧面积和表面积的计算,并能运用到实际问题中。

  (二)教学难点:理解圆柱侧面展开图与圆柱的各部分之间的联系,并推导出圆柱侧面积和表面积的计算公式。

  (三)教学关键:利用教具,学具进行实验活动,引导学生观察、思考、经历计算公式的推导过程。

  数学《圆柱的表面积》教学设计 篇4

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)六年级下册第21~22页。例3、4教学圆柱表面积的概念,探求表面积的计算方法。学生已经学过长方体、正方体表面积的计算,因此对圆柱表面积概念的理解并不困难。利用已有知识的迁移,联系长方体、正方体的表面积进行类比,认识圆柱的表面积,并在此基础上,引导学生自主探索出圆柱表面积的计算方法,体会转化、变中有不变的数学思想。

  (二)核心能力

  运用迁移类推的学习方法,通过想象、操作、讨论认识圆柱的表面积及表面积的计算方法,发展空间观念,体会转化、变中有不变等数学思想。

  (三)学习目标

  1.通过复习旧知,对长方体和正方体表面积知识进行迁移,并结合自己制作的圆柱模型,理解圆柱表面积的含义。

  2.利用自制的圆柱,通过想象、操作、讨论等活动,自主探求出圆柱的侧面积和表面积的计算方法,在对比中理清二者的区别,经历知识形成的过程,发展空间观念,并体会转化、变中有不变等数学思想。

  3.利用所学知识解决圆柱表面积的相关实际问题,在解决问题的过程中,体会圆柱的广泛应用。

  (四)学习重点

  圆柱表面积的计算

  (五)学习难点

  圆柱体侧面积计算方法的推导

  (六)配套资源

  实施资源:《圆柱的表面积》名师课件、长方体、正方体、圆柱学具

  二、学习设计

  (一)课前设计

  自己准备一个长方体、正方体,并分别测量出相关的数据,计算出它们的表面积。

  【设计意图:唤起对学生已有经验的回顾,为新知识的学习作铺垫。】

  (二)课堂设计

  1.创设情境,引入新课

  师:昨天我们认识了一位新朋友—圆柱,谁能向大家介绍一下你的这位新朋友。(生说各种特征)

  师:生活中有很多物体都是圆柱形的,我们很有必要进一步认识圆柱。关于圆柱你还想知道些什么?

  今天我们就来一起研究圆柱的表面积。(板书课题)

  2.探究新知

  (1)认识表面积

  ①回忆旧知

  师:我们学过正方体和长方体的表面积(出示一个长方体)谁来摸一摸这个长方体的表面积,怎么求它的表面积?

  学生上台演示。

  小结:六个面的面积总和是长方体的表面积。

  师:正方体呢?

  学生自由发言。

  ②迁移类推新知

  师:观察自己手中的圆柱模型,摸一摸、想一想并指出圆柱的表面积,怎样求圆柱的表面积?

  学生操作后,自主发言。

  根据学生发言板书:圆柱的表面积=圆柱的两个底面面积+圆柱的侧面积

  【设计意图:学生已经学过长方体、正方体表面积的计算,因此对圆柱表面积概念的理解并不困难。所以利用已有知识的迁移,联系长方体、正方体的表面积进行类比,学生独立总结出圆柱的表面积定义。考查目标1。】

  (2)探求表面积计算方法

  ①自主探索

  师:两个底面是圆形,我们早就会求它的面积,而它的侧面是一个曲面,曲面的面积我们没有学过怎么办?想一想,能否将这个曲面转化成我们学过的平面图形?

  学生自由发言,

  师:因为我们已经知道圆柱的展开图,大家一致认为要把侧面展开,来计算它的侧面积。下面请四人一组对照手中的圆柱体学具进行操作,并讨论推导出圆柱侧面面积的计算方法。

  以小组为单位进行操作活动。

  ②交流汇报

  各小组展示汇报,引导学生互相评价。

  预设1:沿高剪开

  预设2:沿斜线剪开

  预设3:随意剪开或撕开

  引导小结(PPT演示并板书):无论我们将侧面展成什么样的不规则图形,最后都通过剪拼,得到一个长方形。长方形的面积等于圆柱的侧面积,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,长方形的面积等于长×宽,所以圆柱的侧面积等于底面周长×高。

  ③用字母表示

  师:怎么用字母表示呢?

  直接计算:S=Ch

  利用直径计算:S=πdh

  利用半径计算:S=2πrh

  ④归纳小结

  师:圆柱的侧面积问题解决了,圆柱的表面积问题也就迎刃而解了,我们一起用字母表示圆柱的表面积吧。

  S表=S侧+2S底

  师:要求圆柱的表面积需要知道哪些条件?

  练一练:

  第21页的做一做。

  一个圆柱形茶叶筒的侧面贴着商标,圆柱底面半径是5cm,高是20cm。这张商标纸的面积是多少?

  学生独立完成后汇报。

  师:通过计算,你发现圆柱的表面积和侧面积有什么不同?

  引导小结:侧面积是表面积的一部分,表面积还包含两个底面积。

  【设计意图:学生已经知道圆柱的展开图,所以此环节让学生根据已经有知识经验,先进行自主操作探究,经历求侧面积的过程,加深理解并形成空间观念,然后归纳出表面积的计算方法,最后进行侧面积与表面积的对比,进步加深二者的区别和联系。考查目标1、2、3.】

  (3)举一反三,灵活应用

  出示例4:

  一顶圆柱形厨师帽,高30cm,帽顶直径20cm,做这样一顶帽子至少要用多少平方厘米的面料?(得数保留整十数。)

  ①理解题意

  师:求多少面料就是求什么?

  师:“没有底”的帽子如果展开,它由哪几部分组成?

  小结:“没有底”的帽子的展开图,它是由一个底面和一个侧面组成。

  ②独立完成

  学生独立完成后交流汇报。

  ③归纳小结

  师:通过计算这道题目,你有什么收获?

  引导小结:根据具体情况,确定求哪些面的面积之和。实际使用的面料要比计算的结果多一些,所以这类问题往往用“进一法”取近似数。

  【设计意图:例4是圆柱表面积的实际应用,现实生活中有关表面积计算的情形复杂多变,所以在解决此例题时,要培养学生养成认真审题的习惯,在学生理解题意后,独立解决,最后回顾反思,总结出解决此类问题要注意的事项。考查目标3.】

  3.巩固练习

  (1)求下面圆柱的侧面积。

  ①底面周长是1.6m,高是0.7m。

  ②底面半径是3.2dm,高是5dm。

  (2)小亚做了一个笔筒,她想给笔筒的侧面和底面贴上彩纸,至少需要多少彩纸?

  4.课堂总结

  师:回顾本节的学习,你们有什么收获?

  引导小结:认识了圆柱的表面积,并利用转化的思想推导出了圆柱的表面积怎样计算,并利用它来解决生活中的一些问题。

  (三)课时作业

  1.利用工具量出你所需要的信息,计算你手中圆柱体的表面积。

  (1)测量的数据

  (2)计算过程及结果

  数学《圆柱的表面积》教学设计 篇5

  教学目标:

  1、通过动手操作,认识圆柱的展开图,理解圆柱侧面积和表面积的含义。

  2、探索和掌握圆柱侧面积和表面积计算方法,并能解决生活中相应的实际问题。

  3、进一步培养学生的动手操作能力,发展学生的空间观念。

  教学重点:

  圆柱体的表面积公式的推导。

  教学难点:

  圆柱体侧面积公式的推导

  教学过程:

  活动一:

  教师出示喝水用的杯子,提问是什么形状?

  进一步告诉学生,这个杯子的底面直径是4厘米,高是10厘米米,你能提出什么数学问题?

  学生思考并提出数学问题。

  活动二:

  1、教学圆柱体表面积的意义

  教师:求“做一个这样的圆柱形杯子,至少需要多少纸铁皮”实际上是求什么?

  学生通过思考得出:求需要多少铁皮,也就是求圆柱体的表面积。

  教师板书课题。

  请同学们观察手中的圆柱体,想一想圆柱的表面积包括哪些面的总面积?

  概括:圆柱的两个底面面积加一个侧面面积就是圆柱体的表面积

  板书:侧面积 + 一个底面积×2 = 表面积

  2、引导学生探究圆柱体侧面展开图

  ⑴设疑:我们已经会求什么面的面积?还有什么面的面积不会求?

  ⑵引导:想一想,能否将这个曲面转化成我们学过的平面图形?

  ⑶小组合作进行探究。

  ⑷小组汇报交流研究成果。

  3、探究圆柱体侧面积计算方法

  教师:请各小组研究一下圆柱侧面展开得到的长方形的长和宽与圆柱的哪些部分有关系,有什么样的关系。想一想圆柱的侧面积应该如何计算?

  在学生交流、比较,完善,形成结论:圆柱的侧面积=底面周长

  ×高。

  教师:你能求出做这个圆柱形杯子需要多少铁皮吗?

  学生通过讨论明确解题思路:求需要多少铁皮,就是求这个圆柱的表面积。表面积=侧面积+底面积×2。然后尝试独立完成,并进行交流。

  活动三:

  课件出示闯关题,让学生进行抢答。

  活动四:

  1、请同学谈收获

  2、教师小结:

  今天同学们的表现让我感到很高兴:面对新的问题,不是等着老师讲解,而是自已想办法进行问题转化,用学过的知识去解决新问题,知道吗?这是一种很重要的思考方法,学习数学很需要这种知识迁移能力,希望在以后的学习中同学们继续发扬。

  活动五:

  布置作业:教科书五十页自主练习的第1题。

  数学《圆柱的表面积》教学设计 篇6

  教学内容:《圆柱的表面积》是小学数学第十二册的教学内容。

  教学目标:

  1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

  2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

  教学媒体:圆柱形物体、学具、多媒体课件

  教学重点:圆柱侧面积的计算方法推导。

  准备:课前布置学生用纸片试做一个圆柱体。

  教学过程:

  一、交流做圆柱体的情况。

  师:昨天老师布置你们做一个圆柱体,做起来了吗?谁来介绍一下你是怎样做的。

  生1:我是先找一个圆柱体的茶叶罐,贴着底面剪了2个圆,然后再紧贴着侧面剪下了一个长方形,最后用透明胶粘起来。

  生2:我也先剪出两个一样大的圆,然后剪出一个长方形,开始怎么也做不出来,不是圆太大了就是太小了,后来不断修整,总算做起来。

  生3:我发现两个圆要一样大,长方形纸片的长与圆周长相等时很快就做起来。

  师:这说明什么呢?

  一生抢着说:“原来底面圆的周长等于长方形的长”。

  二、探索圆柱表面积的计算方法。

  (1)引入

  师:这节课我们要研究怎样计算圆柱的表面积。下面我们先来回顾一下圆的面积计算公式是怎样推导出来的?

  生:把圆切割拼成一个近似的长方形。(师用电脑演示过程)

  师:圆面积公式的推导方法,对圆柱的表面积公式推导有没有启示呢?你们打算怎么做?

  生:把圆柱剪开,变成我们学过的图形。

  师:下面分小组探索圆柱的表面积的计算方法。

  (2)小组汇报

  生1:我们小组把做的圆柱体展开后,发现圆柱体由2个相同的底面,和一个侧面组成。侧面展开是长方形,侧面积=底面周长×高。2个底面面积=兀r2×2。所以,圆柱表面积=底面周长×高+兀r2×2

  生2:我们小组同意他们的方法,我们还能用一个字母公式来表示:s圆柱=2兀r×h+兀r2×2 。

  师:还有不同方法吗?

  生3:我的方法是,s圆柱=2兀r×(h+r)不知道行不行。我是从第2个同学公式中,运用乘法分配律转化过来的。

  师:这样做的结果是一样的,有什么道理呢?

  (生陷入思考)

  师:从公式看2个底面圆跑到哪去了呢?

  一个学生恍然大悟,激动地说我知道,转化成长方形了。大多数学生还没领悟过来,他马上到黑板画草图,在老师协助下完成。一画完教室里就响起了热烈的掌声。

  师:太不简单了,这种方法可以说是数学上的一项伟大发现。连书本上都没有,我要向更多的同学和老师介绍。

  师:现在我们有两种方法来计算圆柱的表面积,那么计算一个圆柱的表面积至少要知道什么条件呢?

  生1:半径或直径和高。

  生2:有周长和高也行。

  生3:我发现已知周长和高,用第二种方法计算比较快。

  师:在我们实际生活中有很多特殊情况,同学们要根据具体情况,灵活处理。

  三、自学例3

  师:注意思考:(1)这个圆柱形水桶,有什么不一样,计算时要注意什么?

  (2)什么叫“进一法”?什么情况下要运用进一法?

  生1:这个水桶只有一个底面,不能多算成2个。

  生2:“进一法”书上告诉我们,就是计算结果在求近似数时,没满4也要向前一位进一,就像昨天我们做圆柱体时,要留点“接头”用胶水粘,接头不能舍去。

  师:在一些用料问题上,我们要根据实际情况来考虑。

  四、 计算练习(出了3道题)

  由于计算繁杂时间略显不足,正确率不高,不能全面反馈学生的掌握情况。

  反思:

  这节课虽留有许多缺憾,与传统的教学相比,做题少了些,在计算方面,没达到较多的训练,能影响到作业及今后考试的正确率,但我感到十分成功,我为学生课堂上的生命涌动而兴奋不已,主要有以下几点体会。

  一、教学目标提升了。过去我仅满足于把学生“教会”,学生始终是被动的接受。课堂上学生厌烦,老师急燥,都苦不堪言。在新课程理念指引下,我把促进学生的“发展”,做为我贯穿课堂始终的目标。充分调动学生的主动性,激发学生的探索欲望,学生由被动变为主动。不断体验到自己的智力成果带来的乐趣。

  二、学生在体验中,更好的理解了数学,不断闪现出创新的火花。课前,布置学生做圆柱体,我考虑到学生已有这方面的生活经验,并不难。但要做成一个标准的圆柱体,确实要动一定的.脑筋。通过动手操作,学生其实已经初步感受到圆柱体,由2个相同的圆和一个长方形围成。更难能可贵的是一些学生在做中,发现圆柱底圆周长与长方形长相等。个别没做成功的孩子,在交流活动中,也能体验到失败的原因。促进空间观念的发展。

  三、我也体验到了怎么教数学。

  (1)只有深入理解课程标准,认真领会新课程理念,才能在实践过程中指导教学。

  (2)立足发展学生的能力,设计课堂教学的策略。

  (3)树立正确的教学观,不因考试而教学,教学应以开发学生智能为使命。

  四、不足改进。

  在进行计算圆柱表面积练习时,应大胆让学生运用计算器,提高课堂教学效率。过去总担心一旦用计算器会降低学生的计算能力,会影响今后的考试,计算器只教不用。这节课由于圆柱的表面积计算繁杂,占用较多时间且正确率不高,不能及时有效的反馈学生掌握的情况。所以应根据教学情况,让学生运用计算器来解决计算问题。

  数学《圆柱的表面积》教学设计 篇7

  课前先学——

  课前,教师让学生在家做三件事:(1)自己动手制作一个圆柱;(2)写出制作的步骤;(3)制作过程中有什么发现?

  课上对话——

  师:谁来说说你是怎么做圆柱的?(听到老师这个提问,我在想教学从学生经历的实践体验入手,值得肯定)

  生:我准备了三张纸、圆规和剪刀,……(这么自信的表达,一定很多有价值的内容,倾听,延伸,提炼,概括,问题一样得到解决。这课有听头)

  师:你直接说出步骤。(这么无情地打断学生的讲话,有些失望)

  生:我先准备纸,然后就卷成圆筒,再剪两个底面,就做出来了。(这是个应变能力很强的学生,老师要什么,他就能给什么。其间省略太多东西了)

  师:好的。(这里的“好的”起着语言过渡的作用,然而,学生操作经历的概括,是否有助于理解圆柱的侧面和底面之间的关系,教师并没有关注)

  师:侧面的长和底面的周长有什么关系?(看得出教师最急于提的是这个问题,也难怪,这个一个所有教案中都会出现的问题)

  生:相等。

  师:是这样吗?请你把它剪下来。(“剪下来”的行为怎么不是学生为了说明问题的主动行为,而是教师为了板书和讲解发出的指令)

  (学生刚拿出剪刀,老师就一把接了过来,把学生精心制作的圆柱剪开,贴在黑板上。有些学生小声说道:“真可惜。”)

  师:同学们,你们看,(这是老师讲解前常说的一句话)这个圆柱的侧面展开是一个长方形,长方形的长等于圆柱底面的周长,长方形的宽等于这个圆柱体的高。(迫不及待地告诉,自我中心意识强)圆柱的表面积你们会算了吗?(一句口头禅式的提问,不用想都会知道学生会怎么回答)

  生齐答:会了。(真的会了?还是应付老师的齐答)

  如此“快节奏,高效率”的教学,看起来过程顺利,但是教师主导的课堂,能否实现教学目标,不得而知。

  再读文本——

  拿起教师的教学用书,我们读到了,本节课的教学还应实现这样的教学目标:

  1、让学生探索研究长方形的长和宽与圆柱的关系,发现长方形的长等于圆柱的底面周长、长方形的宽等于圆柱的高;

  2、在如何计算侧面积的推理过程中,锻炼形象思维和抽象思维,培养空间观念;

  3、指导并训练学生规划解决问题的步骤,形成解决问题的思路。

  对话学生——

  课后,找到那位说制作步骤的学生,和他有了这样的对话:

  师:现在愿意跟我们说说圆柱的制作过程吗?

  生:老师根本没有让我把话讲完,其实为了今天的发言,我昨晚就准备了。制作圆柱其实并不容易,特别是制作规定底面和高的圆柱。我和同学们,基本都是先用一张长方形的纸做出圆柱的侧面,然后再用这个圆筒画出两个圆,作为圆柱的底面。这样制作看起来任务是完成了,但算圆柱的侧面积和底面积都不太方便。如果要是让我再制作一个,我会先量出长方形的长和宽,如果用宽作为高,这个长就要用两次,一次是用来求侧面积,一次用来算底面积,因为我发现长方形的长就是圆柱底面的周长。

  师:你的发现,全班学生都会发现吗?

  生:我相信我们班上有不少同学并没有很好的理解。

  师:那怎么办?

  生:老师不是在黑板上讲了吗?没理解的就背公式呗。

  生:老师,我们在课前还讨论过这样的问题,就是为什么全班学生做出的圆柱都是瘦瘦高高的,身材都那么好。其实很多人做圆柱时,都是用长方形的长作高,宽的长度才是底面的周长,我并不赞成老师说:圆柱体侧面展开是一个长方形,长相当于底面周长,宽相当于圆柱的高。应该说:圆柱体侧面展开是一个长方形,长方形的长和宽中的一条边相当于底面周长,另一条边相当于圆柱的高。

  数学《圆柱的表面积》教学设计 篇8

  预设目标:

  1、使学生理解和掌握圆柱体侧面积的计算方法,能正确计算圆柱的侧面积和表面积。

  2、培养学生的观察、操作、概括的能力以及利用知识合理灵活地分析、解决实际问题的能力。

  3、培养学生的合作意识和主动探求知识的学习品质。

  教学重、难点:

  1、理解和掌握圆柱体的侧面积和表面积的计算方法。

  2、培养学生科学的学习态度。

  教学过程:

  一、检查复习,引入新课。

  1、检查:拿出自制的圆柱,分别指出它的底面、侧面和高。

  2、复习:点名说说圆柱两底的关系,圆柱高的条数和关系以及侧面展开可能是什么样的图形。

  3、引入:两个底面和侧面合在一起就是圆柱的表面,这节课我们来学习圆柱的表面积。

  板书:圆柱的表面积

  二、引导探究,学习新知。

  1、侧面积的意义和计算方法。

  ⑴摸一摸自制圆柱体的侧面,谈一谈自己感觉到什么。

  ⑵想一想用我们已有的知识,能不能求出这个曲面的面积。(你能求出这个曲面的面积吗?)

  小组讨论:有什么好办法求出圆柱的侧积吗?

  ⑶剪一剪自制圆柱,汇报交流结果。

  ⑷说一说:圆柱体的侧面可转化为已学过的平面图形是什么?

  它的侧面积正好等于底面周长乘高的乘积。

  板书:圆柱的侧面积=底面周长×高

  ⑸算一算:求出圆柱的侧面积,同学自己自作,交流结果。

  小结:计算圆柱体的侧面积的方法是什么?

  ⑹做一做:

  课本76页例1及77页的第一题。

  2、表面积的意义及计算方法

  ⑴自读课本:什么是圆柱的表面积?

  板书:圆柱的表面积=侧面积+2个底面积

  ⑵练一练:(小黑板出示)

  ⑶小结:

  圆柱的侧面积等于底面积周长与高的乘积,圆柱的表面积等于两个底面积与侧面积的和,但在实际生活的应用中,有许多问题要根据实际情况,合理灵活地求出圆柱的表面积。

  三、巩固练习,灵活运用

  1、自学课本,书77页例3。

  ⑴分小组讨论;

  ⑵学生反馈。

  2、问:要知道圆柱形的物体的侧面积,要求哪些面的总面积?

  3、只列式不计算。

  小黑板出示题目。

  4、实践练习

  ⑴小组合作:测量并计算自制圆柱形实物的侧面积。

  ⑵讨论:要求出圆柱形的物体的侧面积,是求哪些面的总面积?需要知道哪些数据?怎样能测量这些数据?

  ⑶测量:测量所需的数据。

  ⑷计算:根据量得的数据。列出相应的算式并算出结果。

  四、课堂小结:

  说一说你今天学会了什么知识?

  数学《圆柱的表面积》教学设计 篇9

  一、设计理念及设计思路。

  建立促进学生全面发展的数学课程体系是新课程改革的重要任务。数学要从以获取知识为着重目标转变为首先关注学生的发展,创造一个有利于学生活泼发展的教育环境,提供给学生一个充分探究、创新发展的空间。在学习中,学生是学习的主体,教师是教学活动的组织者、引导者和合作者。在这一教学理念的指导下,我在设计本节课时,重点和难点之处都是安排学生进行动手操作,讨论交流,学生参与到知识获取中,真正理解了圆柱的侧面积为什么是底面周长×高,并能运用公式灵活计算。

  数学学习活动不单是单纯的接受与记忆,而是让学生亲身经历和体验富有个性的探究过程。因此设计剪一剪、看一看、找一找、议一议等教学活动。

  二、教学目标。

  知识与技能:

  1、理解表面积的含义;

  2、掌握圆柱的侧面积,表面积的计算方法,会运用公式计算表面积,解决有关的简单实际问题。

  过程与方法:

  经历圆柱的侧面积、表面积的公式的发现过程,体验利用旧知识迁移学习的方法。

  情感态度与价值观:

  感悟数学知识的能力,体会数学知识之间的相互联系。

  重点:理解求圆柱的侧面积、表面积的计算方法并能正确计算。

  难点:灵活运用侧面积、表面积的有关知识解决实际问题。

  教学准备:投影仪,圆柱模型、小剪刀。

  三、教学过程。

  (一)、复习引入。(投影出示)

  (1)口答下列各题:

  ①圆的半径是1厘米,圆的周长是多少?面积是多少?

  ②长方体、正方体的表面积如何计算。(单位:厘米)

  3 3

  4 3

  5 3

  你能算出它们的表面积吗?

  (2)引入新课:我们已经掌握了长方体、正方体的表面积的计算方法,今天我们要来探讨圆柱表面积该如何计算。

  板书课题:圆柱的表面积

  (二)、探究新知。

  (1)圆柱的表面积的含义。

  师:你们知道长方体、正方体的表面积指什么?圆柱的表面积指的又是什么?(讨论、交流)

  学生得出结论:圆柱的表面积=圆柱的侧面积+两个底面积

  (2)计算圆柱的表面积。

  ①组织学生将自制的圆柱模型展开分组学习。

  ②侧面展开可能会出现以下几种情况:长方形、正方形、平行四边形。

  ③以长方形为例,指导学生观察联系。

  长方形的长等于圆柱底面的周长,宽等于圆柱的高。

  得出结论:长方形的面积= 长 × 宽

  圆柱的侧面积=底面周长 × 高

  师:圆柱的两个底面是圆形,我们早就会计算它的面积了,现在我们又推导出圆柱的侧面积计算公式,那么你们知道计算圆柱的表面积吗?

  (3)解决实际问题。

  ①投影出示例4:一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(复数保留整十平方厘米)

  ②组织学生读题,找出条件,说说实际是求什么问题。分组学习

  ③学生独立完成计算。

  ④反馈订正。

  订正时让学生讲解题思路和步骤及计算结果取近似值的方法。

  强调:这里不能用“四舍五入”法取近似值。在实际中,使用的材料都要比计算得到的结果多一些,因此要用“进一法”取近似值。

  三、课堂小结:圆柱的表面积怎样计算?

  四、应用反馈。(独立完成计算)

  1、一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。

  2、广告公司制作了一个底面直径是1.5m,高2.5m的圆柱形灯箱,它的侧面最多可以张贴多大面积的海报?

  板书设计:

  圆柱的表面积

  圆柱的表面积= 圆 柱 侧 面 积 + 两 个 底 面 积

  宽(圆柱的高)

  长(底面圆的周长)

  圆柱侧面积=底面周长×高

  数学《圆柱的表面积》教学设计 篇10

  教学过程:

  一、导入

  1、圆的半径是5cm,圆的周长是多少?面积呢?

  2、长方形的面积的计算公式是:(说一说,做一做)

  3、长方体和正方体的表面积怎么计算的?(小组交流汇报)

  4、那么圆柱的表面积该怎么计算?

  二、新授

  (一)1、出示圆柱实物,师生共同探讨“圆柱的表面积指的是什么?”圆柱的表面积=?(结论:圆柱的表面积=圆柱的侧面积+两个底面的面积)

  2、圆柱的底面积你会计算吗?(圆形面积s=πr2)

  3、圆柱的侧面积你会计算吗?

  ①圆柱的侧面是什么形状?(长方形)

  ②圆柱侧面(长方形)面积=长方形的面积=长×宽,

  圆柱侧面(长方形)的长=?

  圆柱侧面(长方形)的宽=?

  ③圆柱的侧面积=?

  (组内观察交流讨论汇报说明理由)

  4、小结:圆柱的表面=圆柱侧面积×圆柱的高

  (二)一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要多少面料?(得数保留整十平方厘米)

  ①求需要多少面料,就是求帽子的……?

  ②厨师帽是由那几个面组成的?

  (三)一个圆柱地面半径是2cm,高是4.5cm,求它的表面积。本题与上一例题有何不同?

  三、练习(练习二)

  四、总结

  通过本课学习你有哪些收获?

  五、知识拓展

  1、制作一个底面直径是40cm圆柱形水桶,用掉了9420cm的铁皮,这个水桶有多高呢?

  2、一座风动力磨坊,高 10m,底面直径 6m,现在要为这座磨坊粉刷涂料,粉刷1平方米需要涂料 2公斤,那么需要买多少公斤的涂料呢?

  板书设计:

  圆柱的表面积

  圆柱的表面积=两个底面的面积+圆柱的侧面积

  圆柱的侧面积=底面周长×圆柱的高

  教学目标:

  1、通过已知长方体、正方体的表面积迁移到圆柱的表面积。

  2、在交流中让学生逐步理解圆柱表面积的含义,了解圆柱侧面积与表面积的关系。

  3、圆柱表面积=两个底面(圆形)的面积+圆柱的侧面(长方形)面积,在推导过程中使学生们了解到圆柱侧面(长方形)的长等于底面的周长,侧面的宽就是圆柱的高,从而得出圆柱侧面积=底面周长×圆柱的高。

  重点难点:

  1、理解圆柱的表面积含义,推导计算圆柱表面积,并能正确计算圆柱的表面积。

  2、灵活运用圆柱表面积公式,解决生活实际问题。

  教具学具:实物展台、圆柱实物、学生自制圆柱模型、生活中的圆柱

  预习要求:圆柱的表面积是由哪几部分组成的?怎样计算出圆柱的表面积呢?

  教学反思:

  在教学过程中师生共同探讨、研究,利用多媒体课件与学生实践操作相结合的方法,很好的使学生理解并掌握了圆柱的表面积的推导和实际应用,完成了本课的预设目标。在今后的教学过程中应该多增加一些实际圆柱物体的表面积的计算和应用,因为学习知识的目的就在于应用。

本文到此讲解完毕了,希望对大家有帮助。

免责声明:本文由用户上传,如有侵权请联系删除!