东南教育网您的位置:首页 >教育动态 >

数学知识:初中三角函数解题技巧

导读 最近越来越多的小伙伴对于初中三角函数解题技巧这方面的问题开始感兴趣,因为大家现在都是想要了解到此类的信息,那么既然现在大家都想要知

最近越来越多的小伙伴对于初中三角函数解题技巧这方面的问题开始感兴趣,因为大家现在都是想要了解到此类的信息,那么既然现在大家都想要知道初中三角函数解题技巧,小编今天就来给大家针对这样的问题做个科普介绍吧。

三角函数是中考必不可少的的考点,也是初中数学学习的重难点。下面整理了三角函数的解题技巧,供参考。

初中三角函数解题技巧

三角函数解题技巧

1.直接法

顾名思义,就是直接进行正确的运算和公式变形,结合已知条件,得到正确的答案。三角函数中大量的题型都是根据该方法求值解答的,它要求我们对三角函数的基本公式要牢牢掌握。

2.换元法

换元法就是用一个量替代另一个量,发现题设中(隐含)条件,进行带式替换,从而将三角函数求值转变成代数式求值。

3.比例法

对三角等式变形,找出与之有关的函数值,利用比例性质,对三角函数值进行计算。

三角函数如何得高分

对于公式的记忆,强调一点,就是要关注公式本身的特征,对比理解记忆。

例如:

sin(A+B)=sinAcosB+cosAsinB,我们可以记作“SCCS,左右符号相同”;

cos(A+B)=cosAcosB-sinAsinB,我们就可以记作“CCSS,左右符号相异”。

对于二倍角公式,我们可以在上面公式的基础上,将B换做A即可。

由解析式研究函数的性质

求三角函数的最小正周期,求三角函数在某区间上的最值,求函数的单调区间,判定函数的奇偶性,求对称中心,对称轴方程,以及所给函数与y=sinx的图像之间的变换关系等等。

对于这些问题,一般要利用三角恒变换公式将函数解析式化为y=Asin(ωx+φ)的形式,然后再求相应的结果即可。

在这一过程中,一般要先利用诱导公式、二倍角公式、两角和与差的恒等式等将函数化为asinωx+bcosωx形式,然后再利用辅助角公式,化为y=Asin(ωx+φ)即可。

免责声明:本文由用户上传,如有侵权请联系删除!