东南教育网您的位置:首页 >大学 > 大学信息 >

数学知识:初中三角函数倍角公式及推导

导读 最近越来越多的小伙伴对于初中三角函数倍角公式及推导这方面的问题开始感兴趣,因为大家现在都是想要了解到此类的信息,那么既然现在大家都

最近越来越多的小伙伴对于初中三角函数倍角公式及推导这方面的问题开始感兴趣,因为大家现在都是想要了解到此类的信息,那么既然现在大家都想要知道初中三角函数倍角公式及推导,小编今天就来给大家针对这样的问题做个科普介绍吧。

倍角公是三角函数中非常实用的一类公式。下面小编为大家整理了初中三角函数倍角公式及推导,供参考。

初中三角函数倍角公式及推导

初中三角函数倍角公式是什么

半倍角公式

sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))

二倍角公式

Sin2A=2SinA*CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

三倍角公式

sin3α=3sinα-4sin3α

cos3α=4cos3α-3cosα

tan3α=(3tanα-tan3α)/(1-3tan2α)

四倍角公式

sin4A=-4*(cosA*sinA*(2*sinA^2-1))

cos4A=1+(-8*cosA^2+8*cosA^4)

tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

五倍角公式

sin5A=16sinA^5-20sinA^3+5sinA

cos5A=16cosA^5-20cosA^3+5cosA

tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)

初中倍角公式推导过程

在二角和的公式中令两个角相等(B=A),就得到二倍角公式.

sin(A+B)=sinAcosB+cosAsinB

--->sin2A=2sinAcosA

cos(A+B)=cosAcosB-sinAsinB

--->cos2A=(cosA)^2-(sinA)^2=(1-(sinA)^2-(sinA)^2=1-2(sinA)^2=2(cosA)^2-1.

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

--->tan2A=2tanA/[1-(tanA)^2]

在余弦的二倍角公式中,解方程就得到半角公式.

cosx=1-2[sin(x/2)]^2

--->sin(x/2)=+'-√[(1-cosx)/2]符号由(x/2)的象限决定,下同.

cosx=2[cos(x/2)]^2

--->cos(x/2)=+'-√[1+cosx)/2]

两式的的两边分别相除,得到

tan(x/2)=+'-√[(1-cosx)/(1+cosx)].

又tan(x/2)=sin(x/2)/cos(x/2)

=2[sin(x/2)]^2/[2sin(x/2)cos(x/2)]

=(1-cosx)/sinx

=.........

=sinx/(1+cosx).

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如有侵权行为,请第一时间联系我们修改或删除,多谢。