东南教育网您的位置:首页 >大学生活 >

数学参数方程技巧 数学参数方程知识点总结

导读 大家好,我是东南,我来为大家解答以上问题数学参数方程技巧,数学参数方程知识点总结很多人还不知道,现在让我们一起来看看吧!  数学参...

大家好,我是东南,我来为大家解答以上问题数学参数方程技巧,数学参数方程知识点总结很多人还不知道,现在让我们一起来看看吧!

  数学参数方程知识点总结

  参数方程定义

  一般的,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t)、y=g(t)

  并且对于t的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程则为这条曲线的参数方程,联系x,y的变数t叫做变参数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。(注意:参数是联系变数x,y的桥梁,可以是一个有物理意义和几何意义的变数,也可以是没有实际意义的变数。

  参数方程

  圆的参数方程x=a+rcosθy=b+rsinθ(a,b)为圆心坐标r为圆半径θ为参数

  椭圆的参数方程x=acosθy=bsinθa为长半轴长b为短半轴长θ为参数

  双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数

  抛物线的参数方程x=2pt2y=2ptp表示焦点到准线的距离t为参数

  直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数

  参数方程的应用

  一般在平面直角坐标系中,如果曲线上任意一点的坐标x, y都是某个变数t的函数:x=f(t),y=g(t), 并且对于t的每一个允许的取值,由方程组确定的点(x,y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x, y的变数t叫做参变数,简称参数。

  圆的参数方程 x=a+r cosθ y=b+r sinθ (a,b)为圆心坐标 r为圆半径 θ为参数

  椭圆的参数方程 x=a cosθ y=b sinθ a为长半轴 长 b为短半轴长 θ为参数

  双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数

  抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数

  直线的参数方程 x=x'+tcosa y=y'+tsina , x', y'和a表示直线经过(x',y'),且倾斜角为a,t为参数.

本文到此讲解完毕了,希望对大家有帮助。

免责声明:本文由用户上传,如有侵权请联系删除!