平行四边形的性质教学方法 《平行四边形的性质》教学设计
大家好,我是东南,我来为大家解答以上问题平行四边形的性质教学方法,《平行四边形的性质》教学设计很多人还不知道,现在让我们一起来看看吧!
一、教学目标
1知识目标
经历探索平行四边形有关概念和性质的过程,使学生理解平行四边形的概念和性质;探索并掌握平行四边形的对边相等,对角相等的性质。
2能力目标
在进行探索的活动过程中发展学生的探究能力, 提高学生运用数学知识解决河题的能力;
3情感目标
在探索讨论中养成与他人合作交流的习惯,增强克复困难的勇气和信心。
二、教学内容及重点、难点:
教学内容:
1平行四边形的概念
2平行四边形的性质
3平行四边形的概念、性质的应用。
教学重点:探索平行四边形的性质
教学难点:通过操作、思考、升化、归纳出结论
教学方法:探索归纳证明
三、教学对象分析
这节内容通过小制作拼图引出平行四边形的定义,让学生经历探索、猜想、证明的过程,对平行四边形的概念及性质有本质性的理解,同时通过自己动手操作发现平行四边形的更多性质,教师在教学过程中,结合具体的背景适时的让学生提出问题并寻求搭档解决问题,满足学生多样化的要求,这节内容对以后的菱形、矩形、正方形内容的引入埋下伏笔。
四、教学策略及教学设计
设置问题情境,从上海世博会引入课题。
1.用图片(东方之冠,日常生活中平行四边形图片)展示平行四边形,引出平行四边形的相关概念(定义,对边,对角,对角线)
2.让学生进行如下操作后,思考以下问题:(动动手幻灯片展示) 小组合作,探究新知(学生思考、操作后,教师用PPT展示) 答:(1)AB=CD,AD=CB
(2)∠1=∠3 ,∠2=∠4,∠B=∠D
(3)AD//BC ,AB//CD
3.针对学生指出 AD//BC,AD//CD分析究其原因。
让学生分析,分小组讨论。
得出结论:∠1和∠3 是内错角,∠2和∠4是内错角,依据“内错角相等,两直线平行”
4.平行四边形的定义,即“两组对边分别平行的四边形是平行四边形”
通过学生们自己动手操作,自己推导,自己发现从而得到平行四边形的有关知识,充分发挥学生们的探究意识和合作交流习惯。
五、教学媒体设计
黑板,ppt课件。ppt课件中的图形,图象力求形象、美观,以引起学生的注意,对平行四边形的边、角(线段、角)特别用醒目的色彩以期牢牢抓住学生的注意力,激发起学生探求未知的欲望;同时借助现代教育技术手段,营造一个创新的学习环境,为学生创设自由、全面发展的时间和空间。
六、过程设计:
1、问题一:从图片中你知道了什么?
1、请学生举出自己身边存在的`平行四边形的例子。
例如:汽车的防护链,折叠衣架,篱笆格子(用幻灯打出实物的照片)
2、将实物转化为几何图形。(用ppt展示)
3、问题二:复习平行四边形的相关概念:介绍平行四边形的书写方式及对角线。(用ppt课件)
4、学生动手画一个平行四边形,同时用几何语言表示平行四边形的定义(用ppt课件)。
5、动动手(出示幻灯片)
合作,探究新知
由此,你能得到哪些结论?四边形ABCD相对的边。
相对的角分别有什么关系?能用别的方法验证你的结论吗?
(让学生实际动手操作,可分组讨论结论,用ppt课件展示)
问题三:平行四边形的对边、对角分别有 什么关系?
6、学生分析总结出:平行四边形的对边相等
平行四边形的对角相等
7、课内总结
通过大家以上的操作,分析,讨论我们已对平行四边形的这一概念及性质有所了解,下面我们把它用到练习中去。
8、达标小测(幻灯片展示)
9、作业布置
七 、板书设计
八、教学流程图
篇二:关于《平行四边形的性质》的教学设计
一、 教学分析
1.教学内容分析
四边形是几何中的基本图形,也是“空间与图形”领域研究的主要对象之一.平行四边形是特殊的四边形,较一般四边形而言,它与我们的关系更为密切,这不仅表现在日常生活中有众多的平行四边形图案,更重要的是,它的性质在日常生活及生产实践等各个领域中均有广泛的应用.此外,平行四边形的相关知识在建筑学、物理学、测绘学中也有较为重要的应用.
平行四边形是一个四边形,但与一般四边形相比,它的对边分别平行.由这一本质特征,教材给出了定义:两组对边分别平行的四边形叫做平行四边形.这一定义既给出了平行四边形的一种判断方法:两组对边分别平行的四边形是平行四边形.也给出了平行四边形的一条性质:平行四边形的对边平行.这为判定一个四边形是平行四边形提供了重要的理论依据,也为证明两直线平行提供了新的方法.
平行四边形从属于四边形,所以一般四边形所具有的性质它都具有,如:内角和是360°、外角和为360°、四边形的不稳定性等.同时,它还具有自己特有的性质:对边平行且相等、对角相等、邻角互补等.这些性质为学生证明或解决线段相等、角相等等问题提供了全新的思路,拓展了学生的视野.另外,平行四边形的这些性质还是所有特殊平行四边形的基本性质.本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础.
2.教学对象分析
平行四边形的定义,学生在小学已经学过,但受当时学生文化基础与认知水平的限制,他们对平行四边形的认识还比较肤浅,对概念本质属性的理解与把握还不够深刻与透彻.作为本节课的核心概念,教学中切忌把平行四边形概念当学生已学知识,简单复习巩固后,一带而过.而应精心设计教学活动,使学生在原有知识的基础上,加深理解、全方位把握.尤其对于定义的双重性,应引导学生细致剖析,使他们理解、让他们会用.
另外,考虑到学生以前对一般四边形与特殊四边形的认识是割裂开来的,他们对两者从属关系的认识较为淡漠,学习定义之前,教师应先让学生明晰一般四边形与特殊四边形的联系与区别,这样既可突出概念本质,也可为性质的学习作好铺垫.
对于性质,从教材的呈现方式看,编者力图以问题为线索,通过观察──猜想──验证──推理证明等一系列数学活动,以自主探索、小组合作探究的方式让学生主动获得.如何真实的反应教材本意,突出性质的探索过程?如何彻底将学生的被动接受转为主动发现?这是执教者必须深思的问题.八年级的学生,已具备了一定的观察、分析、动手操作、语言表达及逻辑推理能力,若直接让学生观察图形──提出猜想──简单度量──推理论证──给出结论,这样难免有穿新鞋走老路之嫌,同时,也很难提高学生的学习积极性.尤其是对于性质的证明,在仅有平行四边形的前提下,如何解决线段相等、角相等这一推证难点也将因教学方式的生硬而变得更加难以逾越,教学效果可想而知.
要切实解决这个问题,教师应通过充分的活动让学生真正“动”起来.我思考了这样的处理:将整个性质的探究分两步走,第一步先引导学生通过观察大胆“猜一猜”,再“画一画”,进一步感受图形特征,接着“量一量”,初步验证猜想.第二步激发学生“剪一剪”,引导他们以小组合作的方式进一步探究.将所画的平行四边形沿其中一条对角线剪开,学生将不难发现所得到的两三角形全等,而全等三角形的对应边相等、对应角相等,这样很自然地进一步验证了猜想,与此同时,通过引导,学生还将发现,连接一条对角线,平行四边形的问题便转化成了全等三角形的问题.这样,一石二鸟,既让学生品尝了探究成功之乐,也为性质的推理论证扫清了障碍,轻松突破难点.
若学生基础较好,还可考虑直接提供学具袋(里面提供可采用度量、平移、旋转、折叠、拼图等方法的相应学具),然后完全放手让学生去自主探索.鼓励学生探究方式、结果、表示方式及学习方式的多样化.相信在老师的精心组织、合作与参与下,学生将会从多个方面完善对平行四边形性质的认识.
3.教学环境分析
⑴借助一般四边形、平行四边形、梯形等模型,明晰一般四边形与特殊四边形的区别与联系,深化对概念本质的认识,也可为性质的探究服务.
⑵借助多媒体课件,使实例背景更形象、更逼真,以此激发学生的学习兴趣.借助Flash动画,从激励学生探究入手,改进问题的呈现方式,使教学更富有趣味性、生动性和互动性,从而激发学生的主动参与热情,为更好的实现教学目标服务.
二、教学目标
目标:理解并掌握平行四边形的概念和性质,能运用平行四边形的概念及性质解决相关问题.
目标解析:
1、经历从现实情景中抽象出平行四边形的过程,发展学生的形象思维与抽象思维.
2、经历观察、实验、猜想、验证、推理、应用等数学活动,培养学生的观察能力、概括能力和演绎推理能力,渗透转化思想.
3、通过性质的应用,培养学生独立思考的习惯,发展合作交流与应用意识,感悟数学与实际生活的密切联系.
4、通过一系列探究活动的开展,使学生从中体验数学活动的探索性和创造性,感受探究成功的乐趣,从而激发学习兴趣.
三、教学重点、难点
教学重点:平行四边形的性质的探究与应用
教学难点:平行四边形性质的探究与证明.
四、教学过程
(一)情景激趣:
1.出示一般四边形模型,随后出示平行四边形模型,感受“特殊四边形”与“一般四边形”的区别与联系.
设计意图:谈话式开场,清新自然.让学生明晰平行四边形与一般四边形从属关系的同时,轻松切入主题.
2.你能举出生活中平行四边形的实例吗?
3.媒体展示:原野鸟瞰、中银大厦外景、篱笆、电动门、艺术装饰物等图片,引导学生从图片中找出平行四边形.
──生活中的平行四边形随处可见,它装点着我们的生活,服务着我们的生活.由此导出课题.
设计意图:先由学生举实例,再选取生活中平行四边形的一组精美图片由媒体集中展示,让学生感悟数学与生活紧密联系的同时,也让他们更真切地感受到学习平行四边形的必要.另外,通过对图形的捕捉与提炼,培养学生的形象思维与抽象思维能力.
(二)探究在线:
1.定义探究:
①结合平行四边形的模型提问:平行四边形的“平行”体现在哪里?
②师生共议,归纳定义.
定义:有两组对边分别平行的四边形叫做平行四边形.
结合媒体动画演示,学习平行四边形的表示法、读法及对边、对角、邻边、邻角等概念.
设计意图:突出概念本质,深化对定义的理解.将对边、对角等概念由媒体形象生动的展示,可使枯燥的概念更加灵动,让学生自觉地进入到对定义的深入探究中来.
③出示梯形模型,巩固定义(两组对边分别平行).
④图形及符号语言:
设计意图:多角度的表述,使学生能全面、透彻的理解定义.同时,规范了推理格式、提升了概括能力.
2.性质探究:
①平行四边形除了两组对边分别平行外,还有没有其它性质呢?
探究:(媒体播放,分步出示)
猜一猜:边之间 角之间
本文到此讲解完毕了,希望对大家有帮助。